Magnetic Carbon Microspheres as a Reusable Adsorbent for Sulfonamide Removal from Water

نویسندگان

  • Kewei Dai
  • Fenghe Wang
  • Wei Jiang
  • Yajun Chen
  • Jing Mao
  • Jian Bao
چکیده

Novel reusable magnetic carbon microspheres (MCMs) were prepared by hydrothermal method with glucose as carbon source and Fe3O4 nanoparticles as magnetic raw materials. And adsorption performance of MCMs for sulfonamide removal from water was investigated in detail. The results indicated that the calcination temperature and calcination time had significant effects on the surface area and its volume porous of MCMs. When MCMs were calcined in 600 °C for 1 h, the surface area and volume porous of MCMs were 1228 m2/g and 0.448 m3/g, respectively. The adsorption results showed that the adsorption data fitted well with the Langmuir isotherm model and followed pseudo-second-order kinetics. When the pH value was changed from 4.0 to 10.0, the adsorption capacity of MCMs for sulfonamide was decreased from 24.6 to 19.2 mg/g. The adsorption capacity of as-synthesized MCMs achieved 18.31 mg/g after it was reused four times, which exhibited a desirable adsorption capacity and reusability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Multi-Walled Carbon Nanotube as an Adsorbent for Toluidine Blue O Removal from Aqueous Solution

Toluidine Blue O (TBO) is a cationic dye which is extensively used in the industries. In the present paper a simple and efficient wet chemical method was introduced for removal of TBO from waste aqueous solution. Magnetic multi-walled carbon nanotubes were synthesized using commercially available multi-wall carbon nanotubes and magnetic iron oxide nanoparticles which were examined for removal o...

متن کامل

Investigation the efficiency of magnetized carbon nanotubes in the removal of aniline from aqueous solutions

Background &Objectives: Aniline is a substance used in chemical industries and in various processes such as pesticide production, chemical bleaching, textile dyes, etc. In spite of the negative effects of aniline on the environment due the difficult decomposition of this substance, various methods have been investigated to remove this substance from water resources. The aim of this study was to...

متن کامل

The Perlite-calcium Alginate-activated Carbon Composite as an Efficient Adsorbent for the Removal of Dyes from Aqueous Solutions

To remove dyes from wastewater, the perlite-calcium alginate–activated carbon (PCA) composite was prepared by a simple method. This composite was characterized by FTIR, XRD, SEM, and BET techniques. A high capacity of PCA was observed for the adsorption of some dyes such as methylene blue (MB) and methyl orange (MO) from aqueous solutions (1111 and 909 mg g-1). The best results were achieved at...

متن کامل

Mesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution

Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...

متن کامل

Preparation of Ceramic Composite Filter with Titanium Oxide Nanoparticles and Active Carbon Content for Treatment of Sea Water

In this mentioned study for sea water treatment ceramic composites were made from natural alumina and adsorbent active ingredients. According to the experimental results, filters along with active agents have acceptable effects on drinking water parameters and contaminants in compare with 1053 ISIRI standard. Modular set up was made for sea water treatment tests. Water flowrate after filtration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017